

This report was generated by **ctitool.com** 



# **CTI REPORT**

This report was generated by the CTI Tool, to help organizations go through the Circular Transition Indicators (CTI) process and apply the methodology into their circularity and sustainability strategies.

The CTI is a universal and consistent framework developed by WBCSD together with 26 of their members to measure circularity. Built for business, by business, the framework is a globally recognized methodology that can be applied to businesses in all industries.

In this report, you will find detailed information about your CTI assessment, such as:

- the results from data calculations based on the data your company entered into the CTI Tool
- detailed visualisation for the indicators selected for this assessment, such as circular inflow and outflow, water circularity, energy and financial indicators such as circular material productivity
- the overall company circular performance
- potential opportunities for circular improvement.

You will also be able to see in which step of the CTI assessment your company currently is.

The CTI framework provides businesses with a common language to communicate with both internal and external stakeholders. You can use this document in meetings with your colleagues or to report on the current status of your company's circular and sustainability efforts.

To make the best of this report, we recommend that you study the CTI framework document.

# **Computer mouse**

| CTI<br>TO                                   | <b>DL</b>                                | Company name<br>Business level<br>Created by<br>Time frame | CTI DEMO<br>Product line<br>CTI DEMO<br>31/12/2018 - 31/12 | /2019               |                                              |                            |    |
|---------------------------------------------|------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------|----------------------------------------------|----------------------------|----|
| STEP 1 O<br>Define the scope                | STEP 2 O<br>Define the indicators        | STEP 3 O                                                   | STEP 4 🖉                                                   | STEP 5 🖉<br>Analyze | STEP 6 🥑<br>Prioritize                       | STEP 7 O                   |    |
| Selecte                                     | d indicators                             | ;                                                          |                                                            |                     |                                              |                            |    |
| <b>Close the loo</b><br>This set of indicat | <b>p</b><br>ors provides insights on you | <b>Optin</b><br>Ir This se                                 | <b>hize the loop</b><br>t of indicators provides insi      | ghts on resource-   | Value the loop<br>This set of indicators sho | ws the added business valu | ie |

% recovery type
% onsite water circulation

use efficiency.

% critical inflow

of your company's circular material flows.

🔗 % Circular material productivity

📀 % CTI revenue

**Excluded from the assessment** 

% circular inflow

% circular outflow

% water circularity

🔗 % renewable energy

company's effectiveness in closing material loops.

Packaging and batteries are not included in the assessment.

# **Overview of your circular performance**



The diagram above illustrates the circular performance of the business level selected for this assessment. It includes total inflow and outflow of materials, with the percentage based on material weight.

Inflow will be marked as circular if flows are non-virgin and/or renewable, and outflow will be marked as circular if it is both potentially recoverable and will be actually recovered.

(1) Lost potential refers to the percentage of material that has recovery potential but is not currently being recovered, therefore losing recovery potential.

# **Close the loop: Inflow details**

O The diagrams below show the circular performance of the inflows of the business level analysed in this assessment. Flows are sorted based on the largest mass, most circular inflow, and most linear inflow. These breakdowns are useful to identify hotspots in your dataset and to determine where your focus areas are.

| Breakdown of mass          |     |             |
|----------------------------|-----|-------------|
| Virgin & Renewable         | 0%  |             |
| Non-virgin & Renewable     | 0%  |             |
| Virgin & Non-renewable     | 86% | 181170.00kg |
|                            |     |             |
|                            |     |             |
|                            |     |             |
|                            |     |             |
| Non-virgin & Non-renewable | 14% | 28830.00kg  |
|                            |     |             |

### Largest inflow

| 1. Acrylonitrile butadiene | V-R | NV | V-NR        |       | NV |
|----------------------------|-----|----|-------------|-------|----|
| 120000kg                   | 0%  | 0% | 95%         |       | 5% |
| 2. Stainless steel insert  | V-R | NV | V-NR        | NV-NR |    |
| 30000kg                    | 0%  | 0% | 56%         | 44%   |    |
| 3. Copper wires            | V-R | NV | V-NR        | NV-NR |    |
| 19500kg                    | 0%  | 0% | 56%         | 44%   |    |
| 4. Acrylonitrile butadiene | V-R | NV | <b>V-NR</b> |       | NV |
| 15000kg                    | 0%  | 0% | 95%         |       | 5% |
| 5. Phenolics in USB        | V-R | NV | V-NR        |       | NV |
| 7500kg                     | 0%  | 0% | 100%        |       | 0% |

### Most circular inflow

| 1. Refurbished parts (from<br>0 kg | V-R<br>0% | NV<br>0% | V NV-NR<br>0% 100% |       |       |
|------------------------------------|-----------|----------|--------------------|-------|-------|
| 2. Stainless steel insert          | V-R       | NV       | V-NR               | NV-NR |       |
| 30000 kg                           | 0%        | 0%       | 56%                | 44%   |       |
| <b>3. Copper wires</b>             | V-R       | NV       | V-NR               | NV-NR |       |
| 19500 kg                           | 0%        | 0%       | 56%                | 44%   |       |
| <b>4. Silicon metal</b>            | V-R       | NV       | V-NR               |       | NV-NR |
| 3000 kg                            | 0%        | 0%       | 90%                |       | 10%   |
| 5. Acrylonitrile butadiene         | V-R       | NV       | V-NR               |       | NV    |
| 120000 kg                          | 0%        | 0%       | 95%                |       | 5%    |

### Most linear inflow

| 1. Phenolics in USB               | V-R | NV | V-NR | NV |
|-----------------------------------|-----|----|------|----|
| 7500 kg                           | 0%  | 0% | 100% | 0% |
| <b>2. Polyurethane</b>            | V-R | NV | V-NR | NV |
| 7500 kg                           | 0%  | 0% | 100% | 0% |
| <b>3. Polyvinylchloride (PVC)</b> | V-R | NV | V-NR | NV |
| 7500 kg                           | 0%  | 0% | 100% | 0% |
| 4. Acrylonitrile butadiene        | V-R | NV | V-NR | NV |
| 120000 kg                         | 0%  | 0% | 95%  | 5% |
| 5. Acrylonitrile butadiene        | V-R | NV | V-NR | NV |
| 15000 kg                          | 0%  | 0% | 95%  | 5% |

# **Close the loop: Outflow details**

( The diagrams below show the circular performance of the outflows of the business level analysed in this assessment. The percentage of recovery potential reflects your company's ability to design or treat its outflow to ensure materials can be technically recovered. The percentage of actual recovery reflects the amount of materials actually recovered.

Recovery is not the same as collection, because after collection materials can still end up in landfill or incineration. Thats why this'indicator requires actual data. The breakdown of mass visually shows the lost potential of the circular out flow due to partial actual recovery. Flows are sorted based on the largest mass, most circular outflow and most linear outflow.



#### Most circular outflow

| <b>1. Scrap</b> | Lin   | Circular outflow |          |
|-----------------|-------|------------------|----------|
| 3000 kg         | 10%   | 90%              |          |
| <b>2. Mouse</b> | Linea | ir outflow       | Circular |
| 210000 kg       | 77%   |                  | 22%      |

| 1. Mouse Linear outflow                                                                  |                 |
|------------------------------------------------------------------------------------------|-----------------|
| 210000 kg                                                                                | Circular<br>22% |
| 2. Scrap         Lin.         Circular outflow           3000 kg         10%         90% |                 |

#### Most linear outflow 1. Mouse Linear outflow Circular... 210000 kg 77% 22% 2. Scrap Lin.. Circular outflow 10% 90%

## Water

| Water circularity                    | 14%                          | Renewable energy |
|--------------------------------------|------------------------------|------------------|
| Water circularity = Average (        | Renewable energy             |                  |
|                                      |                              | total energy     |
| Water circularity refers to water us | e on local level and aims at |                  |

3000 kg

Energy

(1) Energy refers to the use of renewable energy for business operations. Your goal should be to reach 100% renewable energy use by decreasing overall energy consumption or substituting use of fossil fuels for renewable options.

| Water circularity 14%                                        | Renewable en    |
|--------------------------------------------------------------|-----------------|
| Water circularity = Average ( water inflow + water outflow ) | Renewable energ |
|                                                              | total energy    |
|                                                              |                 |

lower freshwater demand. Circularity of water is determined through the % circular water inflow and % circular water outflow,

POWERED BY **wbcsd** CIRCULAR IQ

10%

n

n

x 100%

# **Optimize the loop**

| Critical inflow                    |   | 1%       |
|------------------------------------|---|----------|
| mass of inflow defined as critical | n | x 100%   |
| total mass of inflow               | n | x 100 // |

Critical inflow highlights the share of linear inflow considered critical or scarce. This will help your company access the risk level of certain specific material flows and to prioritize actions accordingly.

#### **Critical Materials**

| Name          | Mass    | Virgin Renewable | Non-Virgin Renewable | Virgin Non-renewable | Non-virgin Non-renewable |
|---------------|---------|------------------|----------------------|----------------------|--------------------------|
| Silicon metal | 3000 kg | 0                | 0                    | 90                   | 10                       |

900%

### **Onsite water circulation**

| Q water use - Q total water withdrawal | n | x 100%   |
|----------------------------------------|---|----------|
| Q total water withdrawal               | n | X 100 /0 |

Onside water circulation refers to the internal reuse and recycling of water of a product facility or the location of the company. It is the average between % circular water inflow and % circular water outflow (assuming the volume is the same).

### recovery type

| Breakdown of recover                | <b>ry cycle</b>            |                                        |                           |                                     |                 |
|-------------------------------------|----------------------------|----------------------------------------|---------------------------|-------------------------------------|-----------------|
| Technical<br><b>213000.00kg</b>     |                            |                                        | Biological cycle non-food | Biological cycle food               | Unknown / Other |
| 100%                                |                            |                                        |                           |                                     |                 |
| Technical                           | 213000kg                   | Biological cycle non-foo               | od Okg                    | Biological cycle food               | 0kg             |
| Re-use                              |                            | Re-use                                 |                           | Consumption                         |                 |
| Repair / Refurbish                  | 210000.00 Kg<br><b>99%</b> | Repair / Refurbish                     |                           | Consumption alternative             |                 |
| Repurpose / Remanufacture           |                            | Repurpose / Remanufacture              |                           | Nutrient absorption through biodeg  | radation        |
| Recycle                             | 3000.00 Kg<br><b>1%</b>    | Recycle                                |                           | Biogas / biomass energy recovery    |                 |
| Landfill / mixed waste incineration |                            | Landfill / mixed waste incineration    |                           | Landfill / mixed waste incineration |                 |
| Unknown / other                     |                            | Unknown / other                        |                           |                                     |                 |
|                                     |                            | Nutrient absorption through biodegrada | ation                     |                                     |                 |
|                                     |                            | Biogas / biomass energy recovery       |                           |                                     |                 |

# Value the loop



CTI revenue = Average ( % circular inflow + % circular outflow ) \* revenue

This indicator expresses the monetary value per unit of mass. This absolute value is best used to compare performance over time. An increase in circular material productivity demonstrates a decoupling of financial growth from material use.

Your company's CTI revenue is its revenue adjusted for the % circularity (weighted average of the % circular inflow and % circular outflow) of its product portfolio. The greater the CTI revenue, the better your company can generate revenues from its circular products/business. This metric also reflects decoupling as revenues increase from circular flows.

## STEP 5 Analysis: Inflow

(J) This section shows the results from the CTI calculation performed in Step 4. This is the quantitative foundation for identifying, prioritizing and implementing circular initiatives, therefore crucial for your decision-making. This overview shows your selected flows and scenarios for improving circular performance. It also includes impact on your circular inflow performance, which can be achieved by adopting these inflow optimizations.

## **Inflow questions**

The questions below will help you interpret the results of your data calculations.

#### Why is our circular inflow 14%?

Mostly influenced by ABS and the metals. ABS has 5% non-virgin content and the metals have  ${\sim}50\%$  non-virgin content.

# What are the first impressions about where we should focus our improvement efforts on?

Finding an ABS supplier that is able to use a higher percentage of nonvirgin content.

#### Is it higher or lower than expected?

It is lower than expected as ABS is the dominant material, and has only 5% non-virgin content.

#### Why?

# Which inflows have limited options to improve due to external limitations?

(Sub-)assemblies that are procured as such are hard to influence.

#### Why?

There is complexity in the supply chain.

#### **Inflow** analysis

| Name                                             | Mass(Kg)     | circular inflow | Impact on total circular inflow |
|--------------------------------------------------|--------------|-----------------|---------------------------------|
| Refurbished parts (from mail-back<br>program     | 21300.00 kg  | 100 %           | +10.13%                         |
| Acrylonitrile butadiene styrene (ABS) USB casing | 13501.49 kg  | 5 %             | -0.04%                          |
| Acrylonitrile butadiene styrene (ABS)<br>housing | 108000.00 kg | 15 %            | +4.85%                          |
| Copper<br>wires                                  | 17550.00 kg  | 44 %            | -0.41%                          |
| Phenolics in<br>USB                              | 6750.00 kg   | 0 %             |                                 |
| Polyurethane                                     | 6750.00 kg   | 0 %             |                                 |
| Polyvinylchloride (PVC) insulation wire          | 6750.00 kg   | 0 %             |                                 |
| Silicon<br>metal-                                | 2700.00 kg   | 10 %            | -0.01%                          |
| Stainless steel insert                           | 27000.00 kg  | 44 %            | -0.64%                          |

The circular inflow of the business unit Computer mouse will increase by

if all changes above are implemented.

14%

|                                | Change   | New value  |
|--------------------------------|----------|------------|
| % circular inflow              | 13.87 %  | 27.60 %    |
| Critical materials             | -0.13 %  | 1.16 %     |
| Circular material productuvity | -12.73 % | € 4.80 /kg |
| CTI revenue                    | 57.01 %  | €294206.38 |

This report was generated by ctitool.com

(1) The circular outflow of the business unit Computer mouse will increase by 7.49% if all changes above are implemented.

## **Outflow questions**

The questions below will help you interpret the results of your data calculations.

#### Why is our circular outflow 24%?

The mouse is almost completely refurbishable, but only 25% of the mouses are recovered.

# What are the first impressions about where we should focus our improvement efforts on?

Increasing the number of mouses returned.

#### Is it higher or lower than expected?

It is what we expected, but there is room for improvement.

#### Why?

# Which outflows have limited options to improve due to external limitions?

The scrap.

#### Why?

Because it is already 100% recovered through partnerships.

#### **Outflow analysis**

| Name  | Mass(Kg)        | Recovery potential | Actual recovery | Impact on total circular<br>outflow |
|-------|-----------------|--------------------|-----------------|-------------------------------------|
| Mouse | 210000.00<br>kg | 95 %               | 32 %            | +7.49%                              |

|                    | Change  | New value   |
|--------------------|---------|-------------|
| % circular outflow | 7.49 %  | 31.24 %     |
| CTI revenue        | 57.01 % | 294206.38 % |

if all changes above are

implemented.

# **Analysis: Energy**

Energy measurement includes all the energy carriers that flow into your company (including, but not limited to, gas, electricity and fuels). In line with WBCSD's approach, CTI allows companies to use existing policies and procedures, permitting the reuse of existing data sets.

In CTI, it's not possible for a company to achieve greater than 100% renewable energy. This way, even if your company generates more renewable energy onsite than it uses and sells it back to the grid (utility), it's necessary to cap the renewable energy indicator at 100%.

#### **Energy analysis**

| Name                | Amount    | Improvement |                                                          |
|---------------------|-----------|-------------|----------------------------------------------------------|
| Renewable<br>energy | 1234 kWh  | + 2468 kWh  | The renewable energy of the business unit Computer mouse |
| Total<br>energy     | 12345 kWh | 12345 kWh   | will increase by                                         |
|                     |           |             | if all changes above are implemented.                    |

|                    | Change | New value |
|--------------------|--------|-----------|
| % renewable energy | 10 %   | 20 %      |

#### STEP 5

## **Analysis: Water**

(1) It's necessary to assess water circularity on a local level for a water catchment area or local watershed. The circularity of water is determined through the % circular water inflow and % circular water outflow, which in turn depends on local water conditions.

| Water analysis                  |           |                      |                                                           |
|---------------------------------|-----------|----------------------|-----------------------------------------------------------|
| Name                            | Volume    | Improvement          |                                                           |
| Total circular water<br>inflow  | 1234 m3   | + 1357 m3            | The water circularity of the business unit Computer mouse |
| Total circular water<br>outflow | 2345 m3   | + 2666 m3            | will increase by                                          |
| Total water use                 | 123455 m3 | 123455 m3            | if all changes above are                                  |
| Total water<br>withdrawal       | 12345 m3  | 12345 m3             | implementea.                                              |
| % total water circularity       |           | Change<br>2 %        | New value<br>16 %                                         |
| % onsite water circulation      |           | Change<br><b>0 %</b> | New value<br>900 %                                        |

## STEP 5 Prioritization:Inflow

(i) In this section, you can look at the opportunities and risks associated with your assessment. The section below demonstrates how the circular performance relates to your exposure to linear risks.

By assessing exposure to risks and evaluating your opportunities (via a business case), you can work on scenario-planning and prioritize actions. You can also link your findings to dynamics in the market, operations, business and legal aspects.

### risks

#### Market

Scarcity of the materials might result in a higher resources price in the future.



#### **Business**

Public opinion on electronics producers may put a stronger pull on circular electronics., with a risk of losing market share if we don't increase our circularity.



### opportunities

#### Market

There can be a cost advantage for the non-virgin resources.

#### **Business**

Distinguishing the product with recycled content is already seen to be strong marketing strategy, with increased market share and premium pricing.

#### Operational

The fluctuating quality of recycled ABS may influence the quality of the product's look & feel.



#### Legal

Non-compliance to coming eco-design directives, that require a minimum % recycled content, may result in fines or lawsuits.

| THRE | AT |   |   |   |   |   |   |   |   |   | VUL | NERA | BILITY |
|------|----|---|---|---|---|---|---|---|---|---|-----|------|--------|
| 1    | 2  | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5   | 6    | 7      |

#### Operational

We can set-up or improve our take-back and collection schemes in value chain to increase return flows (and reduce cost).

#### Legal

We can make use of subsidies for secondary material use.

wbcsd CIRCULAR IQ

# **Prioritization:Outflow**

### risks

### Market

The Basel convention for border crossing of electronic waste makes it harder to dispose of linear outflow.





#### Business

Increased scrutiny of WEEE and the amount going into landfill.

| THRE | AT |   |   |   |   |   |   |   |   |   | VUL | NERA | BILITY |
|------|----|---|---|---|---|---|---|---|---|---|-----|------|--------|
| 1    | 2  | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5   | 6    | 7      |

### opportunities

#### Market

Valorizing returned mouses to refurbish, thus increasing circularity and saving costs.

#### **Business**

Discount voucher for returning goods in the store.



#### Legal

More requirements on eco-design principles and EPR schemes for electronic equipment.

| THRE | AT |   |   |   |   |   |   |   |   |   | VUL | NERA | BILITY |
|------|----|---|---|---|---|---|---|---|---|---|-----|------|--------|
| 1    | 2  | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5   | 6    | 7      |

#### Operational

Increasing our circular image may help attracting and retaining millennial talent.

#### Legal

Making use of subsidies and incentives for business model innovation.

**wbcsd** CIRCULAR IQ

# **Prioritization: Energy**

### risks

| Market           Scarcity of fossil resources           THREAT         VULNERABILITY           1         2         3         4         5         6         7           1         2         3         4         5         6         7     | Operational           Worker safety issues           THREAT         VULNERABINAL           1         2         3         4         5         6         7         1         2         3         4         5         6                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Business           Increasing fossil energy prices.           THREAT         VULNERABILITY           1         2         3         4         5         6         7         1         2         3         4         5         6         7 | Legal           More stringent laws around fossil energy use.           THREAT         VULNERABIN           1         2         3         4         5         6         7         1         2         3         4         5         6 |
| <b>portunities</b><br>Market<br>Abundance of renewable resources.                                                                                                                                                                        | <b>Operational</b><br>Green image may help attracting and retaining millennial talent.                                                                                                                                                |
| <b>Business</b><br>Decreasing cost of renewable energy sources.                                                                                                                                                                          | <b>Legal</b><br>Renewable energy subsidies.                                                                                                                                                                                           |



# **Prioritization: Water**

### risks

| Market                                                                  |    |   |   |   |   |   |  |   |   |   |   |     |      |        |
|-------------------------------------------------------------------------|----|---|---|---|---|---|--|---|---|---|---|-----|------|--------|
| Dependency on low water prices, which can rise when scarcity increases. |    |   |   |   |   |   |  |   |   |   |   |     |      |        |
| THRE                                                                    | AT |   |   |   |   |   |  |   |   |   |   | VUL | NERA | BILITY |
| 1                                                                       | 2  | 3 | 4 | 5 | 6 | 7 |  | 1 | 2 | 3 | 4 | 5   | 6    | 7      |

#### **Business**

Local reputation and loss of social license to operate, may result in activism



### opportunities

#### Market

Trading water rights in states with formal water markets.

#### **Business**

Advantages over competitors.

#### Operational

Water shortages disrupting operations and unforeseen mitigation cost



#### Legal

Upcoming tightening of regulations with rising water scarcity.



#### Operational

Reliability of water inflow with consistent flow and pressure.

#### Legal

Potential for more secure water rights due to demonstrable sustainable management.

## STEP 5 Prioritization: Critical materials

### risks

### Market

The supply of silicon metal might be unstable, as two thirds of the world's supply comes from a single area in China.



#### **Business**

Investment interest may decline because of dependency on critical materials.

| THRE | AT |   |   |   |   |   |   |   |   |   | VUL | NERA | BILITY |  |
|------|----|---|---|---|---|---|---|---|---|---|-----|------|--------|--|
| 1    | 2  | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5   | 6    | 7      |  |

### opportunities

#### Market

The price of recycled silicon metals is likely to go down in the next decade, due to increase WEEE recycling efficiencies.

#### **Business**

-

#### Operational

There may be worker safety issues at the limited supply locations for silicon metal.



#### Legal

Phasing out critical materials due to US legislation is expected to happen within the next 5 years.

| THREAT |   |   |   |   |   |   |   |  | VUL | VULNERABILITY |   |   |   |   |   |
|--------|---|---|---|---|---|---|---|--|-----|---------------|---|---|---|---|---|
|        | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  | 1   | 2             | 3 | 4 | 5 | 6 | 7 |

#### Operational

-

#### Legal

There may be federal subsidies for phasing out critical materials.

wbcsd CIRCULAR IQ

## STEP 7 Application

After analyzing the results of your data calculations, prioritizing the risks and opportunities, and assessing the circular solutions, the next step is to formulate targets for improvement and execute related actions.

In this section you can formulate S.M.A.R.T. targets to help you roll out your circular improvement actions according to each target.

| crease refurbishment by increasing coll | lection.                  |                               |
|-----------------------------------------|---------------------------|-------------------------------|
| what needs to happen                    |                           |                               |
| a Set-up collection in shops            |                           |                               |
| b Improve effectiveness of mail-bac     | ckscheme                  |                               |
| when it needs to be happen              |                           |                               |
| a Q2                                    |                           |                               |
| who needs to take action                |                           |                               |
| a Account managers for the bigs sh      | nops                      |                               |
| Departments to involve                  | Other parties to consider | Considerations when executing |
| 1 Account management                    | 1 Retailers               | 1                             |
|                                         |                           |                               |

# **Appendix inflow materials**

| Name                                             | Mass         | Virgin<br>Renewable(%) | Non-Virgin<br>Renewable(%) | Virgin Non-<br>renewable(%) | Non-virgin Non-<br>renewable(%) |
|--------------------------------------------------|--------------|------------------------|----------------------------|-----------------------------|---------------------------------|
| Silicon<br>metal-                                | 3000 kg      | 0                      | 0                          | 90                          | 10                              |
| Acrylonitrile butadiene styrene (ABS) USB casing | 15000 kg     | 0                      | 0                          | 95                          | 5                               |
| Acrylonitrile butadiene styrene (ABS)<br>housing | 120000<br>kg | 0                      | 0                          | 95                          | 5                               |
| Copper<br>wires                                  | 19500 kg     | 0                      | 0                          | 56                          | 44                              |
| Phenolics in<br>USB                              | 7500 kg      | 0                      | 0                          | 100                         | 0                               |
| Polyurethane                                     | 7500 kg      | 0                      | 0                          | 100                         | 0                               |
| Polyvinylchloride (PVC) insulation wire          | 7500 kg      | 0                      | 0                          | 100                         | 0                               |
| Refurbished parts (from mail-back<br>program     | 0 kg         | 0                      | 0                          | 0                           | 100                             |
| Stainless steel insert                           | 30000 kg     | 0                      | 0                          | 56                          | 44                              |

# Appendix outflow materials

| Name  | Mass      | Recovery potential | Actual recovery |
|-------|-----------|--------------------|-----------------|
| Mouse | 210000 kg | 95                 | 24              |
| Scrap | 3000 kg   | 100                | 90              |